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Comparison of the Maxwell and Boltzmann theory for multilayered dielectric random media
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Based on the transfer matrix theory for electromagnetic fields, we develop a corresponding theory for
intensity transport in a one-dimensional random medium. We show the conditions for which the Maxwell
equations, the intensity transport theory, and the Boltzmann equation can lead to similar predictions. We
generalize the transfer matrix theory to study intensity modulated waves and compare its predictions with those
obtained from the Maxwell and Boltzmann equations.
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I. INTRODUCTION

The propagation of electromagnetic fields through hig
scattering media is a subject of interest in many areas
science@1,2#. The Maxwell equations give a very accura
description of the interaction of fields with these media a
microscopic level and explicitly takes interference, diffra
tion, and polarization effects into account. The radiative
ergy transfer~Boltzmann! equation has been used to expla
various phenomena in astrophysics@1#, atmospheric sci-
ences, oceanography, and biophysics@2#. It treats waves as a
transport of particles or energy and neglects any correla
or interference effects. This equation, however, can be
rived only from phenomenological considerations and its r
orous derivation even from the basic scalar wave Maxw
equation is not available@3#.

The precise relationship between the Maxwell and Bo
mann equations is still an open question. The two desc
tions are known to be related for the special cases of stat
ary and homogenous free fields in the absence of any tu
medium@4#. Nonetheless, many important questions rem
to be answered. For example, given a random collection
scatterers, is there a parameter regime for which the Max
and the Boltzmann equations predict similar results? To
knowledge, even for a simple one-dimensional system
random scatterers, a relationship between both theories i
known. A comparative study of the Maxwell and Boltzma
equations has relevance in areas where the Boltzmann e
tion is extensively used to model experimental results.
example, important medical applications of the scatter
properties of near infrared light have been explored rece
for biological tissues@5#. These include spectroscopic@6,7#
and other noninvasive@8–16# techniques to identify abnor
mal tissue behavior. High-frequency radiation like visib
light loses its coherence within a few scattering lengths i
turbid medium. However, if the radiation source is mod
lated in time, the coherence associated with the modula
component is retained upto larger distances@12# and is useful
for characterizing a turbid medium. A modulated source i
turbid medium can give rise to photon density waves t
have some of the usual wavelike properties and have b
discussed extensively for applications in medical diagnos
@12–16#. A nice overview of recent applications and insig
of the photon density waves are given in Ref.@17#.

These experiments are usually modeled using the Bo
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mann transport equation@18#. Under suitable approxima
tions, the Boltzmann equation reduces to the diffusion mo
@19# that has analytical solutions and thus is more appea
@11–16#. However, to test the validity of these approxim
tions and the Boltzmann equation itself, a suitable techni
has to be developed for comparison with the Maxwell eq
tions.

The main aim of this work is to report some conditio
under which the solutions of the Maxwell equations ag
with the predictions of the Boltzmann equation. For simpl
ity, we will consider a multilayered dielectric medium th
scatters preferentially in the forward or backward directio
The advantage such a medium offers is that the solution
Maxwell equations can be obtained from simple transfer m
trices without the unnecessary complications associated
higher dimensions.

The organization of this paper is as follows. In Sec. II w
introduce our turbid medium and revisit the transfer mat
theory and discuss the exact transmission coefficients
Sec. III we develop an approximate theory for the intens
transport based on the transfer matrices for the electric fi
We show that the intensity transfer matrix theory is similar
the Boltzmann equation. We then discuss the paramete
gime where the ensemble averaged solution of the Maxw
equations is related to the Boltzmann equation. In Sec. IV
derive a microscopic transfer matrix approach for intens
modulated waves and compare the Maxwell and the Bo
mann theory for these waves. We conclude with a short s
mary in Sec. V.

II. EXACT SOLUTION OF THE MAXWELL EQUATIONS
USING TRANSFER MATRICES

The random medium whose optical propagation prop
ties we will examine in this work consists of a series ofN
lossless plane-parallel dielectric layers arranged perpend
lar to thez axis. Thej th layer is centered at positionzj , has
a width dj and an index of refractionnj ( j 51,N) as shown
in Fig. 1. To simulate a turbid medium the numerical valu
for these parameters were chosen randomly with unifo
distributions. In our calculations we take a ‘‘glasslike’’ inde
of refraction in the range 1.3,nj,1.5. The distance betwee
the center of thej th and (j 11)th layer is denoted byDzj
and we take the range 0.5,Dzj /^Dz&,1.5. For numerical
purposes we will measure all lengths in units of^Dz&, which
©2002 The American Physical Society17-1
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is the average separation between the centers of two ne
boring layers. We neglect any homogeneous dispersion
ing from a wavelength dependent index of refraction. Ho
ever, we will show that due to the arrangement of the sl
the total transmission depends very strongly on the wa
length.

We assume that the incoming electromagnetic field trav
along thez axis perpendicular to the interfaces. This allow
us to analyze the dynamics strictly in one dimension wh
the scattering is restricted to either reflection or transmiss
and we consider the electric field vector parallel to the gla
vacuum interfaces. Due to this geometry, the problem can
investigated numerically using the transfer matrix appro
by matching electric fields at the interfaces@20,21#. In gen-
eral, the electric field is a superposition of plane waves
we denote each plane wave asE5eyEei (6kz2vt), whereE is
the complex amplitude polarized along theey direction and
k52p/l denotes the wave number of the field. The fie
propagates in the positive or negativez direction depending
on the sign in the exponent.

For the j th slab, the amplitudes of the fields travelin
towards the slab along the positive and negativez direction
are denoted byEa andEd and the fields leaving the slab b
Ec andEb , respectively. Using the continuity conditions fo
the electric and magnetic field components at each of the
interfaces atzj6dj /2, the outgoing and incoming fields ca
be related by

Ec5t jEa2
r j* t j

t j*
Ed , ~2.1a!

Eb5r jEa1t jEd , ~2.1b!

where r j5ARj exp@i(2kzj1fj1p/2)# and t j5ATje
if j are

the complex reflection and transmission amplitudes.

Tj5
4nj

2

4nj
2 cos2 knjdj1~nj

211!2 sin2 knjdj
~2.2!

is the real transmission coefficient and the phase is

FIG. 1. Sketch of the multilayered dielectric turbid medium. T
laser light is polarized along they direction and is injected perpen
dicular to the interface of the first slab.
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f j5tan21$~nj
211!tan~njkdj !/2nj%2kdj . ~2.3!

As the medium is lossless the transmission and reflec
coefficients are related viaTj1Rj51. The field amplitudes
on the left and right side of thej th slab can be related
through

S Ec

Ed
D5MEj S Ea

Eb
D , ~2.4!

whereMEj is the transfer matrix for thej th slab given by

MEj5S 1/t j* 2r j* /t j*

2r j /t j 1/t j
D . ~2.5!

Thus the matrixMEj characterizes the field transported b
each slab (j 51,2, . . . ,N). In between the slabs, the electr
field amplitude does not change and the outgoing waveEc of
the slab atzj is identical to the incoming fieldEa of the slab
at zj 11 . Thus for a medium comprised ofN slabs,
the transfer matrix of the medium can be obtained by mu
plying the noncommuting matrices numerically,ME
5MENMEN21¯ME1 . The total reflection and transmissio
coefficients for the entire medium can be computed from
product matrixME via RE5u2ME(2,1)/ME(2,2)u2 and TE
5udet(ME)/ME(2,2)u2, whereME(n,m) denote the four ma-
trix elements ofME .

In Fig. 2 we show the transmissionTE as a function of the
wavelength for a typical random medium ofN5500 scatter-
ers. For very small wavelengths (l,0.02) the transmission
is very small due to destructive interference. This is the p
tonic band gap or the localization regime for a 1D mediu
@22#. Beyond the band-gap regime the transmission is ch
acterized by many interferences and it is very sensitive to
wavelength, as apparent by the oscillatory graph. E

FIG. 2. The transmission coefficientTE as a function of wave-
length for a medium ofN5500 scatterers. The disorder present
nj , dj , and zj varied in the range 1.3,nj,1.5, 0.5,Dzj /^Dz&
,1.5, and 0.0009,dj /^Dz&,0.0011. The graph is displayed wit
only 2000 points, while the transmission, due to resonances,
very rapidly oscillating function of the wavelength. The true sca
of these oscillations is shown in the inset.
7-2
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COMPARISON OF THE MAXWELL AND BOLTZMANN . . . PHYSICAL REVIEW E65 051917
though there is an overall tendency of the medium to beco
more transparent with increasing laser wavelength, the la
size of the fluctuations indicates the importance of the in
ferences between the individual scatterers for strictly mo
chromatic fields. The inset resolves these rapid oscillati
on a very fine wavelength scale. It is quite remarkable tha
increase of the wavelength froml58.00831022 ~with TE
51! by only Dl/l50.01% tol58.00931022 (TE50.2)
changes the optical transmission from perfectly transpa
to nearly opaque. As the transmission coefficient is so se
tively determined by interferences, one might~incorrectly!
conjecture that the Boltzmann theory that does not incor
rate any wavelike phenomena should be completely inap
cable for this one-dimensional medium comprised of 5
glass layers. In the following section we will demonstra
that this conjecture is surprisingly incorrect.

III. THEORIES FOR THE ELECTROMAGNETIC WAVES

A. Intensity transfer matrix theory

Before we proceed to the comparison with the Boltzma
equation, we develop a transfer matrix theory for the int
sity transport. As we will show, such a theory compares w
with the Boltzmann equation and provides the link betwe
the optical characteristics of the individual scatterers a
macroscopic quantities required for the Boltzmann equat
The intensity corresponding to a complex plane wave is
fined asI[(c«/2)E•E* wherec is the speed of the field an
« is the electric permittivity of the medium, respective
Using Eq.~2.1!, the corresponding equations for the intens
can be written as

I c5Tj I a1RjI d2
c«

2
~r j* t jEdEa* 1c.c.!

5Tj I a1RjI d1c«ARjTj sin~2kzj1u!uEduuEau, ~3.1a!

I b5RjI a1Tj I d1
c«

2
~r j* t jEdEa* 1c.c.!

5RjI a1Tj I a2c«ARjTj sin~2kzj1u!uEduuEau, ~3.1b!

whereu is the relative phase between the input fieldsEd and
Ea . The cross terms oscillate at 2k and are associated wit
the interference betweenEa andEd . The key, and only, ap-
proximation we will use to derive the intensity theory is th
we will neglect the interference terms in Eq.~3.1!. The cor-
responding transfer matrix connecting the intensities on
left (I a ,I b) with the intensities on the right (I c ,I d) takes the
form

MI j5S Tj2Rj
2/Tj Rj /Tj

2Rj /Tj 1/Tj
D . ~3.2!

It should be noted that this matrix does not contain the ph
f j , as it depends only on the absolute value of the transm
sion and reflection amplitudes. The real transmission (TI) or
reflection (RI) coefficient for the medium can be compute
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from the product of the matricesMI5MINMIN21¯MI1 in
the same way asTE and RE were derived above from the
matrix elements ofME .

B. The Boltzmann theory for multilayered media

In the absence of absorption the general form of the o
speed Boltzmann equation~radiative transfer equation! is
given by @1,2#

F ]

c]t
1V•“G I ~r ,t,V!5msE dV8p~V,V8!I ~r ,t,V8!

2msI ~r ,t,V!, ~3.3!

wherems is the scattering coefficient,I (r ,t,V) is the inten-
sity, p(V,V8) is the conditional probability that the intensit
propagating alongV direction is scattered in theV8 direc-
tion, andb is the scattering angle given byV•V85cosb.
We denote the average cosine of this angle byg, also known
as the anisotropy factor. To model our multilayered medi
we consider the scattering phase function@23#

p~V,V8!5
1

2p F ~12g!

2
d~cosb11!

1
~11g!

2
d ~cosb21!G . ~3.4!

This phase function reflects the geometry of our slabs
allows scattering only in the forward or backward directio
The Boltzmann equation simplifies to

S ]

c]t
1

]

]zD I ~z,t,1 !52m$I ~z,t,1 !2I ~z,t,2 !%, ~3.5a!

S ]

c]t
2

]

]zD I ~z,t,2 !5m$I ~z,t,1 !2I ~z,t,2 !%, ~3.5b!

where I (z,t,1) and I (z,t,2) are the intensities along th
positive and negativez direction and the reduced scatterin
coefficient is defined asm[(12g)/2 ms . Under a steady
state condition the total reflection and transmission coe
cients for a medium of lengthW are defined asTB
5uI (W,`,1)/I (0,̀ ,1)u and RB5uI (0,̀ ,2)/I (0,̀ ,1)u.
We solve Eq.~3.5! with the boundary conditionsI (0, ,1)
51 andI (W,`,2)50 and obtain the following solution fo
the Boltzmann equation transmission coefficientTB @23#:

TB51/~11mW!. ~3.6!

As the next step we have to relate the macrosco
Boltzmann parametersms andg to the set of 3N microscopic
parameterszj , nj , anddj ( j 51,2, . . . ,N) and to the density
of the scatterersN/W. As the Boltzmann equation describe
the medium only on a macroscopic level, we have to defi
the average transmission coefficient per slab,Tave

[(1/N)( j 51
N Tj . The anisotropy factorg should be directly

related to the average scattering coefficient via
7-3
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S. MENON, Q. SU, AND R. GROBE PHYSICAL REVIEW E65 051917
g52Tave21. ~3.7a!

As a mathematically rigid microscopic derivation of th
Boltzmann equation from the Maxwell equations is n
available, the precise relation betweenms and the paramete
Tave and the density of scatterersN/W is unknown in gen-
eral. For our one-dimensional system we propose to iden
ms with

ms5N/~WTave!. ~3.7b!

Relations~3.7! are the key link between the Boltzmann a
Maxwell theory and the validity of these claims will be ju
tified by the numerical examples to be discussed below.
ing these two relations, the total transmission according
the Boltzmann equationTB from Eq. ~3.6! can be rewritten
as

TB5Tave/@Tave1N~12Tave!#. ~3.8!

We might note that this expression is identical to the o
that would be obtained from the microscopic intensity the
presented in the preceding section for an ‘‘average’’ medi
in which theN random scatterers are replaced withN effec-
tive scatterers having identical transmission coefficientsTj
5Tave. For this special case the product matrixMI
5MINMIN21¯MI1 can be evaluated analytically and w
would find that the total transmission for this medium
given by TI5Tave/@Tave1N(12Tave)# in agreement with
the result~3.8! obtained directly from the Boltzmann equ
tion. This is a strong indication that the proposed relatio
~3.7! are reasonable. In other words, for a medium with l
degree of disorder we expect the intensity and the Boltzm
theory to agree perfectly for monochromatic fields@24#.

Let us now compare the three different approaches
evaluate the total transmission coefficients numerically.
Fig. 3~a! we plot the transmission from the Maxwell equ
tions ~2.5! ~solid curve!, the intensity theory~3.2! ~dot-
dashed curve!, and the solution of Boltzmann equation~3.8!
~dotted curve! for an identical microscopic medium withN
5500 random scatterers. As we saw in Fig. 2 for the sa
random medium, the transmissionTE predicted by Eq.~2.5!
has strong interference contributions for a single mediu
The curve displayed in Fig. 3 labeled^TE& was obtained by
averagingTE over 10 000 media withN5500 random scat-
terers each. This ensemble average removes the sharp
nances seen in Fig. 2. Numerically, the graph^TE& was ob-
tained by multiplying 500 (232) matrices 104 times for
each of the 2000 values of the wavelength that takes a
siderable amount of CPU time.

Good agreement is found between all three theories
l.0.1. In this regime the maximum difference betwe
^TE&, TI , and TB is less than 1%. For smaller waveleng
(l,0.1) the agreement between the exact transmission^TE&
and the two approximationsTI and TB gets slightly worse,
but the overall qualitative agreement extending over the
tire range of the transmission coefficient is remarkable. T
validates the neglect of the interference terms in the der
tion of the intensity theory and also the matching relatio
for the Boltzmann theory.
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Intuitively, one would expect that increasing the numb
of scatterers for wavelengths outside the localization regi
should average the interference effects to zero. On the c
trary, various simulations for different parameter regim
suggest that increasing the number of scatterers does not
essarily lead to a better agreement between^TE& andTI . We
find that the ratio of average spacing between the slabs to
average slab thickness,g[^Dz&/^d&, is a better measure fo
the validity of the intensity theory. The numerical data pr
sented in Fig. 3~a! were for g51000 and suggest that th
Boltzmann theory is a good approximation to the ensem
averaged solutions of the Maxwell equations.

A regime where interference effects cannot be ‘‘remove
by ensemble averaging is shown in Fig. 3~b! whereg510
was too small. The predictions of^TE&, in Fig. 3~b!, are
either larger or smaller thanTI depending on whether ther
is, on average, a strong constructive or destructive inter
ence in the transmission. Thus the Boltzmann theory i

FIG. 3. Comparison between the prediction of the avera
^TE& over 10 000 media~solid curve!, solution of the Boltzmann
equationTB ~dashed curve!, and the intensity transfer matrix theor
TI ~gray curve! as a function of wavelength forN5500 random
scatterers. In~a! the scatterers take random values in the ran
1.3,nj,1.5, 0.5,Dzj /^Dz&,1.5, and 0.0009,dj /^Dz&
,0.0011, corresponding tog51000. In ~b! all the parameters are
the same butdj varies in the range 0.09,dj /^Dz&,0.11 corre-
sponding tog510.
7-4
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COMPARISON OF THE MAXWELL AND BOLTZMANN . . . PHYSICAL REVIEW E65 051917
poor approximation for a medium withg!100. We have
repeated these numerical calculations for ensembles as
ated with a wide range ofg between 103 and 106, and the
resulting transmission curve remains nearly shape invari
only the corresponding wavelength scale for the graph ne
to be decreased with increasingg.

In both figures, however, the transmissionTI predicted by
the intensity transfer matrix theory and the macroscopic
scription of the Boltzmann equationTB is extremely good.
We have numerically verified that even for individualTj
varying from 0.6 to 0.99,TI andTB are in good agreement a
is apparent in the blow up displayed in the inset. In Fig. 3~b!,
at l51, the transmission coefficients of the individual sc
terers varied from 0.887 to 0.967 and the averageTave
'0.934. The relative error betweenTI and TB at l51 in
Fig. 3~b! is less than 0.7% and decreases rapidly with
creasing wavelength because the variation ofTj about its
average value also decreases. Also seen from both grap
Figs. 3 is that the qualitative agreement betweenTI andTB
seems to be rather independent ofg. Note that since interfer-
ence effects have been dropped in the derivation of inten
theory, there is no band gap region for bothTI andTB .

IV. THEORIES FOR INTENSITY MODULATED
WAVES

In the following, we will derive a microscopic transfe
matrix theory for intensity modulated waves and compar
with the solution of the ensemble averaged Maxwell eq
tions and also with the Boltzmann transport theory. The
tensity is modulated with a frequencyvm5ckm , which is
assumed to be much smaller than the carrier freque
2pc/l. The corresponding electric field for such an intens
modulation can be given as a superposition of two mo
chromatic fields with wave numbersk(1)[k1km/2 andk(2)

[k2km/2 with km!k.

E5E~1!ei ~6k~1!z2v~1!t !1E~2!ei ~6k~2!z2v~2!t ! ~4.1!

and the corresponding intensity is

I 5
c«

2
$uE~1!u21uE~2!u21~E~1!E~2!* ei ~6kmz2vmt !1c.c.!%,

~4.2!

where the cross term is the modulated component of
intensity. We derive a theory that permits us to compute
reflection and transmission coefficient for this compone
This can be performed at three different levels of approxim
tion. Using the results of Sec. II we can compute the refl
tion and transmission coefficient exactly, which is essentia
the electric field approach for each of the two monoch
matic fields. On the other hand, following Sec. III A, an a
proximate intensity transfer matrix for each individual sc
terer can be derived by neglecting the interference terms.
third approach will be to solve the Boltzmann equation a
lytically for intensity modulated waves using the correspo
dence relations~3.7!.
05191
ci-

t,
ds

-

-

-

in

ity

it
-
-

cy

-

e
e
t.
-
-
y
-

-
he
-
-

A. Exact theory

It is clear from the discussion in Sec. II that a collectio
of N random scatterers is described by the transfer ma
ME . The corresponding total reflection and transmission a
plitudes are denoted byr (q) andt (q) whereq51,2 labels the
two fields with wave numbersk(1) and k(2), respectively.
Using Eq.~2.1! the two fields satisfy

Ec
~q!5t ~q!Ea

~q! , Eb
~q!5r ~q!Ea

~q! , ~4.3!

where we use the fact that the input fieldEd
(q) at the right end

of the medium is zero. The equations for intensitiesI c andI b
coming in and out of the medium are

I c5I c
~1!1I c

~2!1~Jce
i ~kmz2vmt !1c.c.!, ~4.4a!

I b5I b
~1!1I b

~2!1~Jbei ~2kmz2vmt !1c.c.!, ~4.4b!

whereJp[(c«/2)Ep
(1)Ep

(2)* @p5a,b,c,d# denotes the modu
lated component of the intensity. Using Eq.~4.3! and equat-
ing terms with the same time dependence, the effective
flection and transmission coefficients for the modula
component areRE5r (1)r (2)* and TE5t (1)t (2)* . Both r (q)

andt (q) can be calculated numerically from the matrix pro
uct ~2.5!, resulting in the exact transmission and reflecti
coefficient for the intensity modulated component. All th
interference effects and the exact phase of the reflected
transmitted intensity are included in this approach. T
modulated intensity is complex and the sumuREu1uTEu does
not necessarily equate to unity, since it does not corresp
to the total energy.

B. Approximate transfer matrix for individual scatterers

We now derive an approximate microscopic transfer m
trix involving individual scatterers for the modulated comp
nent of intensity. It follows from Eq.~2.1! that thek(1) and
k(2) components of the fields for thej th scatterer atz5zj
satisfy the following relations:

Ec
~q!5t j

~q!Ea
~q!2

r j
~q!* t j

~q!

t j
~q!* Ed

~q! , ~4.5a!

Eb
~q!5r j

~q!Ea
~q!1t j

~q!Ed
~q! , ~4.5b!

wheret j
(q) andr j

(q) are the transmission and reflection amp
tudes of thej th slab. Substituting Eq.~4.5! in Eq. ~4.4! and
equating the time dependent terms the following equali
can be derived:

Jc5TM jJa1
RM j* TM j

TM j*
Jd2

c«

2

TM jr j
~1!*

t j
~1!* Ed

~1!Ea
~2!*

2
c«

2

TM jr j
~2!

t j
~2! Ea

~1!Ed
~2!* , ~4.6a!
7-5
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Jb5RM jJa1TM jJd1
c«

2
t j
~1!r j

~2!* Ed
~1!Ea

~2!*

1
c«

2
r j

~1!t j
~2!* Ea

~1!Ed
~2!* , ~4.6b!

whereRM j[ARj
(1)Rj

(2)ei (kmzj 1w j ), TM j[ATj
(1)Tj

(2)eiw j , and
w j[f j

(1)2f j
(2) . For the special case ofvm50 the complex

transmission coefficient reduces toTM j5Tj , which was de-
fined in Eq.~2.2!. The cross terms can be rewritten as

Jc5TM jJa1
RM j* TM j

TM j*
Jd

1
ic«

2
ARj

~1!Tj
~2!Ed

~1!Ea
~2!* e2 i ~2k~1!zj 2w j !

2
ic«

2
ARj

~2!Tj
~1!Ea

~1!Ed
~2!* ei ~2k~2!zj 1w j !, ~4.7a!

Jb5RM jJa1TM jJd2
ic«

2
ARj

~2!Tj
~1!Ed

~1!Ea
~2!* e2 i ~2k~2!zj 2w j !

1
ic«

2
ARj

~1!Tj
~2!Ea

~1!Ed
~2!* ei ~2k~1!zj 1w j !. ~4.7b!

The interference terms oscillate with high wave numb
2k(1) or 2k(2). Under situations when such interferen
terms average to zero, the following transfer matrix for t
modulated component can be constructed

MI j5S TM j2uRM j u2/TM j* RM j* /TM j*

2RM j /TM j 1/TM j
D , ~4.8!

whereTM j andRM j are the complex transmission and refle
tion coefficients for each slab. The total transmission (TI)
and reflection (RI) coefficient forN random scatterers can b
determined from the matrix multiplication MI
5MINMIN21¯MI1 . note that the matrix~4.8! goes to ma-
trix ~3.2! when the modulation frequencyvm50 and the
matrix elements are real numbers.

C. Predictions of the Boltzmann equation

The Boltzmann equation with an intensity modulat
source is represented by the boundary conditionsI (z50,t,
1)5eivmt andI (W,t,2)50. In Ref.@24# an analytical form
for the reflection and transmission coefficients was deriv

TB5UC22 ikm~ ikm22m!S2

C2~ ikm2m!S U, ~4.9a!

RB5U Sm

C2~ ikm2m!SU, ~4.9b!

whereC[cosh(kW) andS[sinh(kW)/k with k[@22imkm

2km
2 #1/2 and W is again the length of the medium. For th

special case of a nonmodulated intensity,km50, Eqs.~4.9!
reduce to the form given in Eq.~3.6!. Continuing with the
05191
r

e

-

,

same procedure as outlined in Eq.~3.7!, we relatem to the
average transmission coefficient and the total number
scatterersN. This time we define the average transmissi
Tave5(1/2N)( j 51

N (Tj
(1)1Tj

(2)) to representk(1) and k(2) in
the Boltzmann theory.

We have derived three different methods to calculate
reflection and transmission coefficients for an intens
modulated wave. Since the ensemble averaged quan
^RE& and^TE& are exact solutions of the Maxwell equation
they can be used to test the validity of matrix~4.8! and the
results of the Boltzmann equation~4.9!. In Fig. 4 the reflec-
tion and transmission coefficients obtained from the th
methods are displayed as a function of the modulation
quency vm . We have selected a parameter regimeg
51000,l50.063) where the Maxwell and Boltzmann the
ries are in agreement for a nonmodulated field (vm50). As
can be seen from the graphs, the agreement between
Boltzmann and intensity transfer matrix theory remains go
even for modulated intensities. The solution of the Maxw
equations differs only quantatively and even the oscillatio
in u^RE&u that can be associated with the finite widthW of the
medium are reproduced byRI as well asRB .

V. SUMMARY

We discussed the parameter regime for which the
semble averaged solution of the Maxwell equations can
linked directly to the Boltzmann transport equation f
monochromatic waves. We have also derived and teste
transfer matrix approach for the propagation of electrom
netic waves whose intensity is modulated. We again foun
good agreement with the ensemble averaged Maxwell eq
tions and Boltzmann equation if the average spacing betw
the scatterers is much larger than their width. This agreem
is remarkable as one expects that for a one-dimensional~1D!
medium the wave interferences would be most domin
compared to higher dimensional systems and therefore

FIG. 4. The absolute values of the reflection~left y axis! and
transmission~right y axis! coefficients for modulated intensities as
function of the modulation frequencyvm in units of c/^Dz&. The
solid curves are foru^RE&u andu^TE&u averaged over 10 000 media
The gray curve forRI andTI , and the dashed curve forRB andTB

are in full agreement. For all the curves, 500 scatterers were
signed the random values in the range 1.3,nj,1.5, 0.5
,Dzj /^Dz&,1.5, 0.0009,dj /^Dz&,0.0011, and the carrie
wavelength isl/^Dz&52p/50.
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present system should not agree so well with the predict
of the Boltzmann theory as in 2D or 3D geometries.

For computational simplicity we have used a geome
that permitted us the use of the propagator solutions to
steady state Maxwell equations~transfer matrices!. However,
despite this restriction we point out that this medium can
realized experimentally using a sequence of plane par
glass sheets with varying thickness and index of refraction
sketched in Fig. 1.

Even though we have shown that the intensity matri
are very helpful in linking the steady state solutions of t
Boltzmann equation with the ensemble averaged solutio
the Maxwell equations, we have not managed to show
possible relationship at the level of differential equatio
e

-

.

nd

p

nc

.
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.
e
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Many more studies will be required to relate the microsco
and macroscopic approaches at the level of the equation
motion. As a first step in this direction it might be qui
useful to derive from the Maxwell equations an appropri
set of differential equations, which describes the tempo
and spatial evolution of the ensemble averaged la
intensity.
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