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Comparison of the Maxwell and Boltzmann theory for multilayered dielectric random media
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Based on the transfer matrix theory for electromagnetic fields, we develop a corresponding theory for
intensity transport in a one-dimensional random medium. We show the conditions for which the Maxwell
equations, the intensity transport theory, and the Boltzmann equation can lead to similar predictions. We
generalize the transfer matrix theory to study intensity modulated waves and compare its predictions with those
obtained from the Maxwell and Boltzmann equations.
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[. INTRODUCTION mann transport equatiofl8]. Under suitable approxima-
tions, the Boltzmann equation reduces to the diffusion model

The propagation of electromagnetic fields through highly[19] that has analytical solutions and thus is more appealing
scattering media is a subject of interest in many areas dfl1-16. However, to test the validity of these approxima-
science[1,2]. The Maxwell equations give a very accurate tions and the Boltzmann equation itself, a suitable technique
description of the interaction of fields with these media at &1as to be developed for comparison with the Maxwell equa-
microscopic level and explicitly takes interference, diffrac-tions.
tion, and polarization effects into account. The radiative en- The main aim of this work is to report some conditions
ergy transferBoltzmann equation has been used to explain under which the solutions of the Maxwell equations agree
various phenomena in astrophysifs], atmospheric sci- With the predictions of the Boltzmann equation. For simplic-
ences, oceanography, and biophy$®s It treats waves as a ity we will consider a multilayered dielectric medium that
transport of particles or energy and neglects any correlatiofcatters preferentially in the forward or backward direction.
or interference effects. This equation, however, can be delhe advantage such a medium offers is that the solutions of
rived only from phenomenological considerations and its rig-Maxwell equations can be obtained from simple transfer ma-
orous derivation even from the basic scalar wave Maxwelfrices without the unnecessary complications associated with
equation is not availablEs]. higher dimensions. . .

The precise relationship between the Maxwell and Boltz- The organization of this paper is as follows. In Sec. Il we
mann equations is still an open question. The two descrip'mtroduce our turbid medium and revisit the transfer matrix
tions are known to be related for the special cases of statioriheory and discuss the exact transmission coefficients. In
ary and homogenous free fields in the absence of any turbigec. !ll we develop an approximate theory for the intensity
medium[4]. Nonetheless, many important questions remairfransport based on the transfer matrices for the electric field.
to be answered. For example, given a random collection ofVe show that the intensity transfer matrix theory is similar to
scatterers, is there a parameter regime for which the Maxwelhe Boltzmann equation. We then discuss the parameter re-
and the Boltzmann equations predict similar results? To ougime where the ensemble averaged solution of the Maxwell
knowledge, even for a simple one-dimensional system ofquations is related to the Boltzmann equation. In Sec. IV we
random scatterers, a relationship between both theories is né€rive a microscopic transfer matrix approach for intensity
known. A comparative study of the Maxwell and Boltzmann Mmodulated waves and compare the Maxwell and the Boltz-
equations has relevance in areas where the Boltzmann equ&ann theory for these waves. We conclude with a short sum-
tion is extensively used to model experimental results. Fofary in Sec. V.
example, important medical applications of the scattering
propgrties of near infrared light _have been explored recently; exacT SOLUTION OF THE MAXWELL EQUATIONS
for biological t!ssue_s{S]. These mc_lude spegtrosporﬁﬁ,?] USING TRANSFER MATRICES
and other noninvasive8—16] techniques to identify abnor-
mal tissue behavior. High-frequency radiation like visible The random medium whose optical propagation proper-
light loses its coherence within a few scattering lengths in dies we will examine in this work consists of a seriesNof
turbid medium. However, if the radiation source is modu-lossless plane-parallel dielectric layers arranged perpendicu-
lated in time, the coherence associated with the modulatel@r to thez axis. Thejth layer is centered at positian, has
component is retained upto larger distanded and is useful ~a widthd; and an index of refraction; (j=1,N) as shown
for characterizing a turbid medium. A modulated source in dn Fig. 1. To simulate a turbid medium the numerical values
turbid medium can give rise to photon density waves thafor these parameters were chosen randomly with uniform
have some of the usual wavelike properties and have bedtistributions. In our calculations we take a “glasslike” index
discussed extensively for applications in medical diagnosticsf refraction in the range 13n;<1.5. The distance between
[12-14. A nice overview of recent applications and insight the center of thgth and (+1)th layer is denoted b}z,
of the photon density waves are given in Réf7]. and we take the range G8\z;/(Az)<1.5. For numerical

These experiments are usually modeled using the Boltzpurposes we will measure all lengths in unitg afz), which
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FIG. 1. Sketch of the multilayered dielectric turbid medium. The <Az

laser light is polarized along thedirection and is injected perpen-

dicular to the interface of the first slab. L - .
FIG. 2. The transmission coefficiefit as a function of wave-

is th tion betw th ¢ ft . hength for a medium oN=500 scatterers. The disorder present in
IS the average separation between the centers of two neigh- dj, andz varied in the range 18n;<1.5, 0.5<Az/(Az)

boring layers. We neglect any homogeneous dispersion aris?) 5' ang 0.0008 d; /(Az)<0.0011. The graph is displayed with
ing from a wavelength dependent index of refraction. How-q 1, 2000 points, while the transmission, due to resonances, is a

ever, we will show that due to the arrangement of the slabgery rapidly oscillating function of the wavelength. The true scale
the total transmission depends very strongly on the wavegs these oscillations is shown in the inset.

length.

We assume that the incoming eIecFromagnetlc f|9|d travels bj=tan” 1{(n12+ 1)tan(n;kd;)/2n;} —kd;.. (2.3
along thez axis perpendicular to the interfaces. This allows
us to analyze the dynamics strictly in one dimension where\s the medium is lossless the transmission and reflection

the scattering is restricted to either reflection or transmissiorgpefficients are related Vi +R;=1. The field amplitudes
and we consider the electric field vector parallel to the glasspn the left and right side of th¢th slab can be related

vacuum interfaces. Due to this geometry, the problem can bgyrough

investigated numerically using the transfer matrix approach

by matching electric fields at the interfade0,21]. In gen- 'E. Ea

eral, the electric field is a superposition of plane waves and ( Ed) - EJ( Eb)'

we denote each plane waves gE€(“¥*~ Y, whereE is

the complex amplitude polarized along tgedirection and ~ whereMg; is the transfer matrix for thgth slab given by

k=2m/\N denotes the wave number of the field. The field N .

propagates in the positive or negatwelirection depending Mo — 11 —r7

on the sign in the exponent. O =y oy )
For the jth slab, the amplitudes of the fields traveling

towards the slab along the positive and negaiiirection ~ Thus the matrixMg; characterizes the field transported by

are denoted b¥, andE,4 and the fields leaving the slab by each slab=1,2, ... N). In between the slabs, the electric

E. andE,, respectively. Using the continuity conditions for field amplitude does not change and the outgoing w&yvef

the electric and magnetic field components at each of the twthe slab ag; is identical to the incoming fiel&, of the slab

interfaces ag;+d;/2, the outgoing and incoming fields can at z;,;. Thus for a medium comprised oN slabs,

(2.9

(2.9

be related by the transfer matrix of the medium can be obtained by multi-
plying the noncommuting matrices numericallyM g
rJ*tJ— =MgyMen_1 - *Mg;. The total reflection and transmission
Ec=tjEa— t* Eq, (213 coefficients for the entire medium can be computed from the
J

product matrixMg via Rge=|—Mg(2,1)/Mg(2,2)? and Tg
=|detMg)/Mg(2,2)?, whereM g(n,m) denote the four ma-
trix elements ofM ¢ .

In Fig. 2 we show the transmissidrt as a function of the
wavelength for a typical random medium Nf=500 scatter-
ers. For very small wavelengtha €0.02) the transmission
is very small due to destructive interference. This is the pho-

Eb:ran+tjEd, (21b)

where r;= R, exdi(2kz+ ¢+ m/2)] and t;=T;e'* are
the complex reflection and transmission amplitudes.

2
T = 4n; (2.2) tonic band gap or the localization regime for a 1D medium
. 4”,'2 cos knjdj+(nj2+ 1)%sin® kn;d; [22]. Beyond the band-gap regime the transmission is char-
acterized by many interferences and it is very sensitive to the
is the real transmission coefficient and the phase is wavelength, as apparent by the oscillatory graph. Even
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though there is an overall tendency of the medium to becomgom the product of the matricelsl, =M My_1:*-M,; in
more transparent with increasing laser wavelength, the largge same way a3 and Rg were derived above from the
size of the fluctuations indicates the importance of the intermatrix elements oM.

ferences between the individual scatterers for strictly mono-
chromatic fields. The inset resolves these rapid oscillations
on a very fine wavelength scale. It is quite remarkable that an
increase of the wavelength from=8.008< 10~ 2 (with Tg In the absence of absorption the general form of the one-
=1) by only AN/A=0.01% toA=8.009<10 2 (Tg=0.2) speed Boltzmann equatiofradiative transfer equationis
changes the optical transmission from perfectly transparergtiven by[1,2]

to nearly opaque. As the transmission coefficient is so sensi-
tively determined by interferences, one midhtcorrectly
conjecture that the Boltzmann theory that does not incorpo-
rate any wavelike phenomena should be completely inappli-
cable for this one-dimensional medium comprised of 500
glass layers. In the following section we will demonstrate
that this conjecture is surprisingly incorrect.

B. The Boltzmann theory for multilayered media

0
ﬁ-l—ﬂ.V}l(r,t,Q):,usf dQ'p(Q,Q)I(r,t,Q')

— el (1,1, 9), (3.3

where u is the scattering coefficient(r,t,Q) is the inten-
sity, p(Q,Q’) is the conditional probability that the intensity
propagating along2 direction is scattered in th@' direc-

I1l. THEORIES FOR THE ELECTROMAGNETIC WAVES tion, andﬁ is the Scattering ang|e given mﬂ’ :COSIB.
We denote the average cosine of this anglebglso known
A. Intensity transfer matrix theory as the anisotropy factor. To model our multilayered medium

Before we proceed to the comparison with the Boltzmann"® consider the scattering phase functag]

equation, we develop a transfer matrix theory for the inten-

sity transport. As we will show, such a theory compares well p(Q,Q")= x { (1-9) S(cosB+1)

with the Boltzmann equation and provides the link between 2 2

the optical characteristics of the individual scatterers and (1+9)

macroscopic quantities required for the Boltzmann equation. 5 5(cos,8—1)}. (3.9
The intensity corresponding to a complex plane wave is de-

fined asl =(ce/2)E- E* wherec is the speed of the field and
e is the electric permittivity of the medium, respectively.
Using Eq.(2.1), the corresponding equations for the intensity
can be written as

This phase function reflects the geometry of our slabs and
allows scattering only in the forward or backward direction.
The Boltzmann equation simplifies to

it o/l @t )= —u{lztH) -1zt -)}h (353

Ce
Ic:T]|a+ R]Id_ 7(r]*t]EdE; +CC)

=TI, +Rjlg+ce VR T;sin(2kz + 0)|E4|[E,], (3.18 ( a

J
ﬁ_5)'(Z't")zﬂ{'(z,t,ﬂ—I(z,t,—)}, (3.50

Ce

* ¢ *
7 4EqEa TC.c) wherel(z,t,+) andI(z,t,—) are the intensities along the

) positive and negative direction and the reduced scattering
=Rjla+Tjla—ce JR;T;sin(2kz;+ 0)|E4l|Eal, (3.1D  coefficient is defined age=(1—g)/2 us. Under a steady
) ] ) ] state condition the total reflection and transmission coeffi-
whered is the relative phase between the input figigsand  Gients for a medium of lengthW are defined asTg
Ea. The cross terms oscillate aknd are associated With —|j(w, e, +)/1(0,+)| and Rg=|1(0,—)/1(0s°,+)|.
the interference betweds, andEy. The key, and only, ap- e solve Eq.(3.5 with the boundary conditions(0, +)
proximation we will use to derive the intensity theory is that — 1 gnq| (W,,—)=0 and obtain the following solution for

we will neglect the interference terms in E.1). The cor- 6 Boltzmann equation transmission coeffici@gt[23]:
responding transfer matrix connecting the intensities on the

left (1,,1p) with the intensities on the right {,1) takes the Ta=1/(1+ xW). (3.6)
form

As the next step we have to relate the macroscopic

3.2 Boltzmann parameteys, andg to the set of 3l microscopic

' parameterg;, n;, andd; (j=1,2, ... N) and to the density

of the scattererdl/W. As the Boltzmann equation describes

It should be noted that this matrix does not contain the phasthe medium only on a macroscopic level, we have to define
¢, as it depends only on the absolute value of the transmighe average transmission coefficient per slalbgye
sion and reflection amplitudes. The real transmissibn 6r E(1/N)EJ-N=1TJ- . The anisotropy factog should be directly
reflection R,) coefficient for the medium can be computed related to the average scattering coefficient via

T,-RIT, R/T,
M”:(

—R/T; 1M,
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9=2Tae 1. (3.79 e e

As a mathematically rigid microscopic derivation of the 1 (@)
Boltzmann equation from the Maxwell equations is not 0.8
available, the precise relation betweegand the parameter
T.ve and the density of scattereldW is unknown in gen-
eral. For our one-dimensional system we propose to identify -
s With

0.6 1

0.78366+

04 - 0.783624

Transmission

Hs=N/(WTqye). (3.7b

0.78358

0.2
Relations(3.7) are the key link between the Boltzmann and | <T> 0.78354

Maxwell theory and the validity of these claims will be jus- )/
tified by the numerical examples to be discussed below. Us o o1 02 03 04 o5
ing these two relations, the total transmission according tc N<Az>

the Boltzmann equatioig from Eq. (3.6) can be rewritten

as

013012 0.13014 0.13016

Te=Tave/[ Tavet N(1—Tad |- (3.9

We might note that this expression is identical to the one
that would be obtained from the microscopic intensity theory
presented in the preceding section for an “average” medium
in which theN random scatterers are replaced witteffec-
tive scatterers having identical transmission coefficiéits
=Tae For this special case the product matri,
=M;y\M|n_1"""M,; can be evaluated analytically and we
would find that the total transmission for this medium is
given by T,=Tae/[ Tavet N(1—Taeo] in agreement with
the result(3.8) obtained directly from the Boltzmann equa-
tion. This is a strong indication that the proposed relations
(3.7) are reasonable. In other words, for a medium with low
degree of disorder we expect the intensity and the Boltzmann
theory to agree perfectly for monoch_romaﬂc fie[@d]. Te) over 10000 medidsolid curve, solution of the Boltzmann

Let us now compare the _three dlf‘fe_rent approa(_:hes an quationTg (dashed curve and the intensity transfer matrix theory
e\_/aluate the total transm|s§|on coefficients numerically. InTI (gray curve as a function of wavelength fd=500 random
Fig. 3(a) we plot the transmission from the Maxwell equa- gcatterers. In@) the scatterers take random values in the range
tions (2.5 (solid curve, the intensity theory(3.2) (dot-  13<n<15 05<Az/(Az)<15, and 0.0008d;/(A2)
dashed curve and the solution of Boltzmann equati@®8)  <0.0011, corresponding tg=1000. In(b) all the parameters are
(dotted curvg for an identical microscopic medium with  the same butl; varies in the range 0.69d;/(Az)<0.11 corre-
=500 random scatterers. As we saw in Fig. 2 for the sameponding toy=10.
random medium, the transmissidi predicted by Eq(2.5
has strong interference contributions for a single medium. Intuitively, one would expect that increasing the number
The curve displayed in Fig. 3 labelédg) was obtained by of scatterers for wavelengths outside the localization regime,
averagingTg over 10000 media wittN=500 random scat- should average the interference effects to zero. On the con-
terers each. This ensemble average removes the sharp res@y, various simulations for different parameter regimes
nances seen in Fig. 2. Numerically, the grdflz) was ob-  suggest that increasing the number of scatterers does not nec-
tained by multiplying 500 (X2) matrices 16 times for  essarily lead to a better agreement betwggs) andT,. We
each of the 2000 values of the wavelength that takes a corfind that the ratio of average spacing between the slabs to the
siderable amount of CPU time. average slab thicknesg=(Az)/(d), is a better measure for

Good agreement is found between all three theories fothe validity of the intensity theory. The numerical data pre-
A>0.1. In this regime the maximum difference betweensented in Fig. @) were for y=1000 and suggest that the
(Tg), T, andTg is less than 1%. For smaller wavelength Boltzmann theory is a good approximation to the ensemble
(A<0.1) the agreement between the exact transmiggigh  averaged solutions of the Maxwell equations.
and the two approximation§, and Ty gets slightly worse, Aregime where interference effects cannot be “removed”
but the overall qualitative agreement extending over the enby ensemble averaging is shown in FigbBwhere y=10
tire range of the transmission coefficient is remarkable. Thisvas too small. The predictions dfTg), in Fig. 3b), are
validates the neglect of the interference terms in the derivaeither larger or smaller thah, depending on whether there
tion of the intensity theory and also the matching relationss, on average, a strong constructive or destructive interfer-
for the Boltzmann theory. ence in the transmission. Thus the Boltzmann theory is a

Transmission

M<Az>

FIG. 3. Comparison between the prediction of the averaged
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poor approximation for a medium with<100. We have A. Exact theory
repeated these numerical calculations for ensembles associ- |t is clear from the discussion in Sec. Il that a collection

ated with a wide range of between 10 and 16, and the o N random scatterers is described by the transfer matrix
resulting transmission curve remains nearly shape mvananME. The corresponding total reflection and transmission am-

only the corresponding wavelength scale for the graph needﬁitudes are denoted by® andt® whereq=1,2 labels the

to be decreased with increasing . _ two fields with wave numbers™® and k®, respectively.
In both figures, however, the transmissibnpredicted by Using Eq.(2.1) the two fields satisfy

the intensity transfer matrix theory and the macroscopic de-
scription of the Boltzmann equatiohg is extremely good. E(Cq>=t(Q)qu), Egm:r(q)qu), (4.3
We have numerically verified that even for individug)
varying from 0.6 to 0.99T, andTg are in good agreement as
is apparent in the blow up displayed in the inset. In Figp) 3

at A =1, the transmission coefficients of the individual scat-
terers varied from 0.887 to 0.967 and the averdgg.
~0.934. The relative error betwedn and Tg at A=1 in
Fig. 3b) is less than 0.7% and decreases rapidly with in-
creasing wavelength because the variationTpfabout its
average value also decreases. Also seen from both graphs in lp=1"+12+ (Jpel Kk enrcc), (4.4
Figs. 3 is that the qualitative agreement betwé&erand Tg
seems to be rather independentofNote that since interfer-
ence effects have been dropped in the derivation of intensit
theory, there is no band gap region for bdthand Ty .

where we use the fact that the input fieﬂﬁf) at the right end
of the medium is zero. The equations for intensitigandl
coming in and out of the medium are

=10 +12+ (3 elkm=emd) 1 ¢ ), (4.43

whered, = (ce/2)EPER)” [p=a,b,c,d] denotes the modu-
Yated component of the intensity. Using Eg.3) and equat-
ing terms with the same time dependence, the effective re-
flection and transmission coefficients for the modulated
IV. THEORIES FOR INTENSITY MODULATED component areRg= rWr@* and TE:t(l)t(Z)*_ Both r(®
WAVES andt® can be calculated numerically from the matrix prod-
In the following, we will derive a microscopic transfer uct (25) resulting .in the.exact transmission and reflection
matrix theory for intensity modulated waves and compare itcoefﬂment for the intensity modulated component. All the
interference effects and the exact phase of the reflected and

with the solution of the ensemble averaged Maxwell equa;

tions and also with the Boltzmann transport theory. The in_transmltted intensity are included in this approach. The

tensity is modulated with a frequeney,,=ck,,, which is modulated Intensity 1s Comp'eix an_d the_ sUR| +|Te| does
assumed to be much smaller than the carrier frequenc ot necessarily equate to unity, since it does not correspond

27rc/\. The corresponding electric field for such an intensity 0 the total energy.
modulation can be given as a superposition of two mono-
chromatic fields with wave numbek§V=k+k,/2 andk® B. Approximate transfer matrix for individual scatterers

=k—kn/2 with ky<k. We now derive an approximate microscopic transfer ma-
trix involving individual scatterers for the modulated compo-

E=EWei(xkPz-0M 4 p@)gi(=kPz=0P) (4 1) nent of intensity. It follows from Eq(2.1) that thek® and

k(®) components of the fields for thggh scatterer az=z;

and the corresponding intensity is satisfy the following relations:
Ce . _ (o) — (D =(a) _ EQ)* }q) (a)
|:?{|E(1)|2+|E(2)|2+(E(1)E(2)*e|(tkmz omd) 4 c.c)l, Ec'=t"E; tJ(TEd , (4.59
(4.2
E(O) = r (VW4 (OEW (4.5

where the cross term is the modulated component of the
intensity. We derive a theory that permits us to compute the (@ (@ . i i
reflection and transmission coefficient for this componentWheret;™ andri™ are the transmission and reflection ampli-
This can be performed at three different levels of approximatudes of thejth slab. Substituting Eq4.9 in Eq. (4.4) and
tion. Using the results of Sec. Il we can compute the reflec€duating the time dependent terms the following equalities
tion and transmission coefficient exactly, which is essentiallyc@n be derived:

the electric field approach for each of the two monochro-

matic fields. On the other hand, following Sec. Il A, an ap- RKAJTMJ Ce TMerﬁD*
proximate intensity transfer matrix for each individual scat- Je=Twmjdat T e e
terer can be derived by neglecting the interference terms. The Mj y

third approach will be to solve the Boltzmann equation ana- ce Tur?

lytically for intensity modulated waves using the correspon- 2 M Egl)Egz)* , (4.63

. 2
dence relation$3.7). 2 tJ( )

1 2)*
E{VED
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_ €& (1), @* c()p@*
3o=Rujdat Twdat &t EQES

Ce * *
- S EWER”, (@.6b

where Ry = \/RJ(15RJ(25e‘(kaJ‘+‘PJ), Twj= \/TJMTlmei ¢i, and
¢;=p\"— (> For the special case of,=0 the complex
transmission coefficient reducesTg;=T;, which was de-
fined in EqQ.(2.2). The cross terms can be rewritten as

ice

/Rj(l)TJ(Z)Egl)Egz)* e i(2kWzj—¢))

ice

5 RPTTELEP @ 5ve),  (4.73

. Rjgz)Tlgl)Eél)Eg)* e i(2kPzj—¢))

‘]b:RMj‘]a+ TMj‘Jd_

ice .
+ JROTPEDVER" g2k T2+ ¢)), (4.7b

The interference terms oscillate with high wave numbe
2k or 2k, Under situations when such interference

terms average to zero, the following transfer matrix for the

modulated component can be constructed

= , (4.9
—Rwj/Twj Ty,

Ij

whereTy; andRy,; are the complex transmission and reflec-
tion coefficients for each slab. The total transmissian) (
and reflection R,) coefficient forN random scatterers can be
determined from the matrix multiplication M,
=M |x\M|n_1-"M,1. note that the matrix4.8) goes to ma-
trix (3.2 when the modulation frequency,,=0 and the
matrix elements are real numbers.

C. Predictions of the Boltzmann equation

I

PHYSICAL REVIEW B5 051917
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FIG. 4. The absolute values of the reflectiaft y axis) and
transmission{right y axis) coefficients for modulated intensities as a
function of the modulation frequenay,, in units of c/(Az). The
solid curves are fol{Rg)| and|{Tg)| averaged over 10 000 media.
The gray curve foR, andT,, and the dashed curve f8; andTg
are in full agreement. For all the curves, 500 scatterers were as-
signed the random values in the range <l<1.5, 0.5
<Az /(Az)<15, 0.000%<d;/(Az)<0.0011, and the carrier
wavelength is\/(Az)=2/50.

same procedure as outlined in E8.7), we relateu to the
average transmission coefficient and the total number of
scattererdN. This time we define the average transmission
Tave= (L2N)S (T +T) to represenk™ and k® in

the Boltzmann theory.

We have derived three different methods to calculate the
reflection and transmission coefficients for an intensity
modulated wave. Since the ensemble averaged quantities
(Rg) and(Tg) are exact solutions of the Maxwell equations,
they can be used to test the validity of mat(&8) and the
results of the Boltzmann equatidd.9). In Fig. 4 the reflec-
tion and transmission coefficients obtained from the three
methods are displayed as a function of the modulation fre-
quency o,. We have selected a parameter regimg (
=1000,A=0.063) where the Maxwell and Boltzmann theo-
ries are in agreement for a nonmodulated fielg,&0). As
can be seen from the graphs, the agreement between the
Boltzmann and intensity transfer matrix theory remains good
even for modulated intensities. The solution of the Maxwell
equations differs only quantatively and even the oscillations
in |(Rg)| that can be associated with the finite widhof the

The Boltzmann equation with an intensity modulatedmedium are reproduced ¥ as well asRg.

source is represented by the boundary conditidjzs=0t,
+)=¢'*mt andl (W,t,—)=0. In Ref.[24] an analytical form
for the reflection and transmission coefficients was derived

Cz—ikm(ikm—z,u)Sz‘

T (k-S| (4.93
_|_ sk
o=tk mis: (498

whereC=coshW) and S=sinh(W)/« with k=[ —2i uk,
—k21Y2 and W is again the length of the medium. For the
special case of a nonmodulated intensity=0, Eqgs.(4.9
reduce to the form given in Eq3.6). Continuing with the

V. SUMMARY

*  We discussed the parameter regime for which the en-
semble averaged solution of the Maxwell equations can be
linked directly to the Boltzmann transport equation for
monochromatic waves. We have also derived and tested a
transfer matrix approach for the propagation of electromag-
netic waves whose intensity is modulated. We again found a
good agreement with the ensemble averaged Maxwell equa-
tions and Boltzmann equation if the average spacing between
the scatterers is much larger than their width. This agreement
is remarkable as one expects that for a one-dimensiaal
medium the wave interferences would be most dominant
compared to higher dimensional systems and therefore the
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present system should not agree so well with the predictionsany more studies will be required to relate the microscopic
of the Boltzmann theory as in 2D or 3D geometries. and macroscopic approaches at the level of the equations of
For computational simplicity we have used a geometrymotion. As a first step in this direction it might be quite
that permitted us the use of the propagator solutions to thgseful to derive from the Maxwell equations an appropriate
steady state Maxwell equatioftsansfer matrices However,  set of differential equations, which describes the temporal

despite this restriction we point out that this medium can beynd spatial evolution of the ensemble averaged laser
realized experimentally using a sequence of plane parallqhtensiw_

glass sheets with varying thickness and index of refraction as
sketched in Fig. 1.

Even though we have shown that the intensity matrices
are very helpful in linking the steady state solutions of the
Boltzmann equation with the ensemble averaged solution of This project is supported by the NSF. We also acknowl-
the Maxwell equations, we have not managed to show @&dge support from the Research Corporation for Cottrell Sci-
possible relationship at the level of differential equations.ence Awards and ISU for URGs.
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